

1A Low Dropout Positive Voltage Regulator

Pin Definition: 1. Fixed / Adj

- 2. Output (Tab)
- 3. Input

SOP-8

Pin Definition:

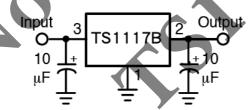
- Fixed / Adj
 N/C
 Output
 Output
- 3. Output 6. Output
- 4. Input 5. N/C

General Description

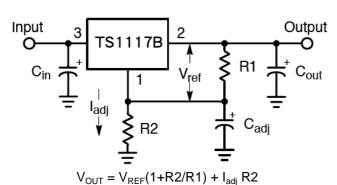
TS1117B are high performance positive voltage regulators are designed for use in applications requiring low dropout performance at full rated current, Additionally, TS1117B provides excellent regulation over variations due to changes in line, load and temperature. Outstanding features include low dropout performance at rated current, fast transient response, internal current limiting and thermal shutdown protection of the output device. TS1117B are three terminal regulators with fixed and adjustable voltage options available in popular packages.

Features

- Low Dropout Performance 1.5V max.
- Fill Current Rating Over Line and Temperature
- Fast Transient Response
- Built-in thermal shutdown
- Output Current Limit
- Line Regulation Typical 0.2%
- Load Regulation Typical 0.05%
- Low-ESR Ceramic Capacitor (MLCC) Required for Stability.
- Good Ripple Rejection


Ordering Information

Part No.	Package	Packing
TS1117BCP <u>xx</u> ROG	TO-252	2.5kpcs / 13" Reel
TS1117BCW <u>xx</u> RPG	SOT-223	2.5kpcs / 13" Reel
TS1117BCS <u>xx</u> RLG	SOP-8	2.5kpcs / 13" Reel


Note: Refer to detail ordering information table.

"G" denotes Halogen Free Products

Typical Application Circuit

Fixed Output Voltage Version

Adjustable Output Voltage Version

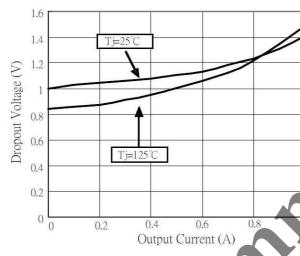
Block Diagram

1A Low Dropout Positive Voltage Regulator

Absolute Maximum Ratings (Note 1)

Parameter	Symbol 📥	Limit	Unit	
Input Supply Voltage		V _{IN}	15	V
Recommend Operation Input Supply Voltage		V _{IN} (Opr. Typ.)	12	V
Power Dissipation (Note 2)		P_{D}	Internal limited	
The arrest Desistance	TO-252		105	
Thermal Resistance Junction to Ambient	SOT-223	$R_{\Theta JA}$	130	°C/W
Junction to Ambient	SOP-8		160	
Operating Temperature Range		T _{OPER}	-40 ~ +125	
Junction Temperature Range		T_J	+150	°C
Storage Temperature Range		T_{STG}	-65 ~ +150	
Lead Soldering Temperature (260°C)	TO-252 / SOT-223 SOP-8		5 2	S

Electrical Specification (T_A=25°C, unless otherwise specified.)


Parameter	Conditions	Min	Тур	Max	Unit
Reference Voltage	V _{IN} = 2.75, lo=1A	1.225	1.25	1.275	V
	V _{IN} = 2.7V~12V, Io=1A	1.176	1.2	1.224	V
	V _{IN} = 3V~12V, lo=1A	1.470	1.5	1.530	V
Output Voltage (Note 4)	V _{IN} = 3.3V~12V, Io=1A	1.764	1.8	1.836	V
	V _{IN} = 4V~12V, Io=1A	2.450	2.5	2.550	V
	V _{IN} = 4.8V~12V; lo=1A	3.235	3.3	3.366	V
	$V_{IN} = 6.5V_{\sim}12V$, $Io=1A$	4.900	5.0	5.100	V
Line Regulation	$Vo+1.5V \le V_{IN} \le 12V$, $Io=10mA$		0.2	0.5	%
Load Regulation (Note 1,2)	$V_{IN} = V_{OUT} + 1.5V$, Io = 10mA~1A		0.05	1.0	%
Dropout Voltage	$o=1A$, $\Delta V_{OUT} = 1\% V_{OUT}$		1.3	1.5	V
Quiescent Current	$V_{IN} = 5V$		5	10	mA
Adjustable Pin Current			90		μA
Output Current Limit	V_{IN} - $V_{OUT} = 1.5V$	1.1			Α
Temperature Stability	Io=10mA,		0.5		%
Ripple Rejection	F= 120Hz, Io= 1A, C_{OUT} =25uF, V_{IN} = Vout+3V		60	70	dB

- Note 1: See thermal regulation specification for changes in output voltage due to heating effects. Line and load regulation are measured at a constant junction temperature by low duty cycle pulse testing. Load regulation is measured at the output lead = 1/18" from the package.
- Note 2: Line and load regulation are guaranteed up to the maximum power dissipation of 15W. Power dissipation is determined by the input / output voltage difference and the output current. Guaranteed maximum power dissipation will not be available over the full input / output voltage range.
- Note 3: Quiescent current is defined as the minimum output current required to maintain the regulation.
- Note 4: The Output Capacitor does not have a theoretical upper limit and increasing its value will increase stability C_{OUT} =100uF or more is typical for high current regulator design.

1A Low Dropout Positive Voltage Regulator

Electrical Characteristics Curve

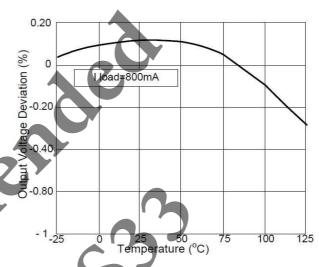


Figure 1. Vdrop vs. Output Current

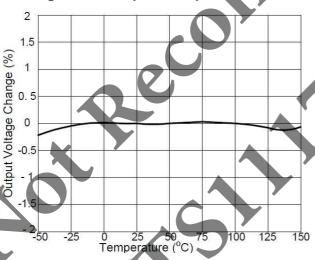


Figure 2. Load Regulation vs. Temperature

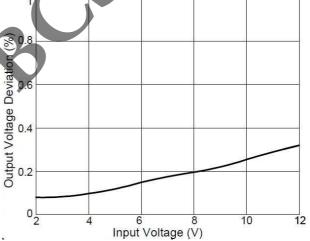


Figure 3. Vout Change vs. Temperature

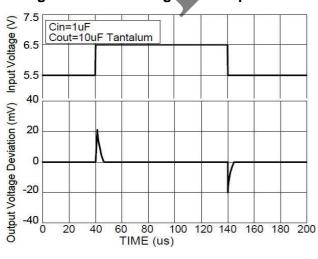


Figure 4. Vout Deviation vs. Temperature

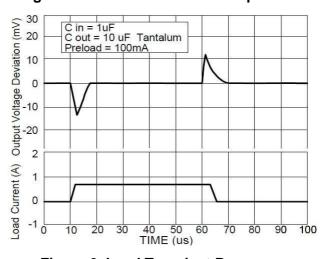


Figure 5. Line Transient Response

Figure 6. Load Transient Response

1A Low Dropout Positive Voltage Regulator

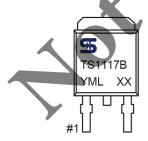
Pb Rohs COMPLIANCE

Ordering information

Oradinig iiii	or dorning information				
Voltage	TO-252	SOT-223	SOP-8		
ADJ	TS1117BCP ROG	TS1117BCW RPG			
1.2V		TS1117BCW12 RPG	6		
1.8V		TS1117BCW18 RPG			
2.5V		TS1117BCW25 RPG			
3.3V	TS1117BCP33 ROG	TS1117BCW33 RPG	TS1117BCS33 RLG		
5V	TS1117BCP50 ROG	TS1117BCW50 RPG	0-2		
Packing code information					
Packing	2.5kpcs / 13" Reel	2.5kpcs / 13" Reel	2.5kpcs / 13" Reel		

1.60 ±0.20

Unit: Millimeters


1A Low Dropout Positive Voltage Regulator

TO-252 Mechanical Drawing 5.20 ±0.25 1.08 ±0.20 1.08 ±0.20

Marking Diagram

2.74 (REF)

0.75 ±0.12

Y = Year Code

M = Month Code for Halogen Free Product

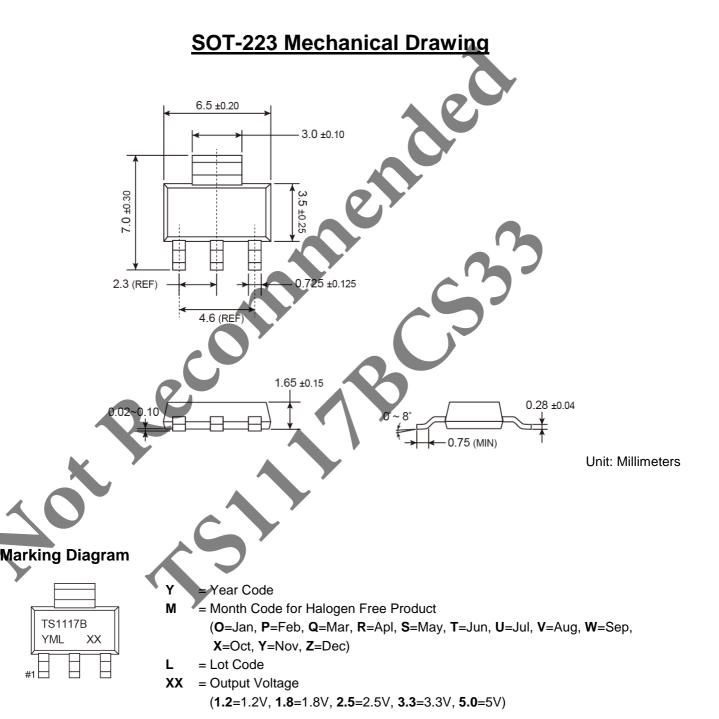
.29 (REF)

(O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep,

X=Oct, Y=Nov, Z=Dec)

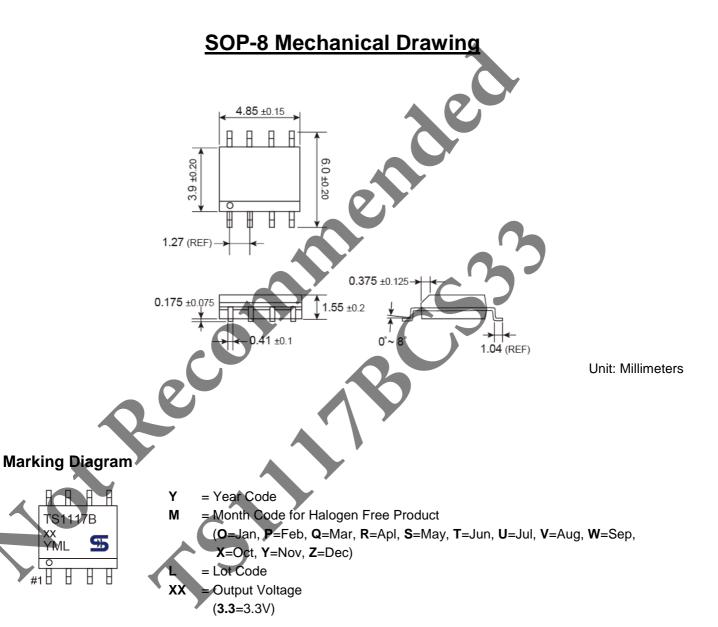
= Lot Code

XX = Output Voltage


(**3.3**=3.3V, **5.0**=5V)

CP = Adjustable Voltage

1A Low Dropout Positive Voltage Regulator



1A Low Dropout Positive Voltage Regulator

1A Low Dropout Positive Voltage Regulator

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.